
Piecewise Linear AD via Source Transformation

Torsten Bosse⇤, Sri Hari Krishna Narayanan†, Laurent Hascoët‡

Overview Algorithmic di↵erentiation (AD) allows the e�cient numerical computation of sensitivities for any math-
ematical function y = F (x), F : Rn ! Rm that is su�ciently smooth and given by a finite straight-line code.
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Here, x 2 X ✓ Rn denotes a vector of input variables, y = y(x) 2 Rm the corresponding output variables, and '
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�
+,�, ⇤, /,
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·, exp, sin, cos, . . .

 
. However, the smoothness

assumption is violated in most real applications. For example, the evaluation routines of many physical applications
contain nonsmooth expressions such as the absolute value, the maximum, and/or the minimum function, in order to
avoid unrealistic quantities. In this case, the standard di↵erentiation rules do not necessarily apply any more. Thus,
the derivatives provided by standard AD tools become unreliable since they are based on the chain rule. Moreover,
the simpler models are questionable even if the derivatives are evaluated at points x 2 Rn where the function is
di↵erentiable, since they do not take nearby kinks or nonsmoothness into account. A remedy for this situation was
recently proposed in [1], where the author presents a method to compute (directional) piecewise linear models of the
original abs-factorable function instead of a simple linearization.

The piecewise linearization �y = �F (x;�x), �F : Rn ⇥Rn ! Rm, at a point x 2 Rn for a directional increment
�x 2 Rn represents the function in a more appropriate way and can be derived by a minor modification of the original
code. Similar to the standard forward mode, the idea is based on defining an extended evaluation routine using the
propagation rules
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for all smooth intermediate expressions with corresponding partial derivatives c
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, one employs the rule for the absolute value:
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Accordingly, one can define corresponding rules for the maximum and minimum using the identities max(p, q) =
(p + q + |p � q|)/2 and min(p, q) = (p + q � |p � q|)/2. As was shown in [2], the extended evaluation routine then
provides a piecewise linearization of F , which can be algebraically represented by an abs-normal form (ANF)
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using an additional vector of switching variables�z 2 Rs for some suitable dimensionsm,n, s 2 N and matrices/vectors

a 2 Rs

, Z 2 Rs⇥n

, L 2 Rs⇥s

, b 2 Rm

, J 2 Rm⇥n

, Y 2 Rm⇥s

.

The matrices might depend on x and can be interpreted as partial derivatives. In detail, if z = (z1, . . . , zs) 2 Rs

denotes the arguments of all s 2 N absolute value functions that occur in the original code, then the matrices are

Z = @z

@x

, L = @|z|
@z

, Y = @y

@|z| , J = @y

@x

,

which consider only those parts of the mappings x ! z, |z| ! z, |z| ! y, and x ! y that only involve smooth
expressions. Both a simple evaluation of �F for given x and direction �x and the computation of the complete ANF
can be done by using techniques from operator overloading and were already implemented in the AD package ADOL-C
[5]. In this paper, we explain our initial development e↵ort for computing the entries of Z, L, J , and Y and the vectors
a and b by making simple modifications to the runtime system of the two source transformation tools OpenAD [4]
and Tapendade [3]. The method will be demonstrated and validated for some simple test problems.
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Propagating incremental directions To use the piecewise linear di↵erentiation drivers in OpenAD and Tapenade,
the user is required only to replace all calls of the abs, min, and max function in the original code by the stub methods

gabs(z, u){u = abs(z)}, gmin(z1, z2, u){u = min(z1, z2)}, and gmax(z1, z2, u){u = max(z1, z2)}, respectively.

The stub methods for the nonsmooth parts are then automatically replaced by methods that implement the corre-
sponding propagation rules for the piecewise linear di↵erentiation without changing the original results of F .

Computing the entries of the ANF by using OpenAD For n input variables, m output variables, and interme-
diate active variables, the forward mode of OpenAD uses an active type containing an array, d, of size n to propagate
directional derivatives according to the propagation rules (2). Thus, if the code is executed in the smooth case, each of
the m output variables will contain a derivative array that represents one row of the Jacobian matrix J, if the derivative
array of each of the input variables is assigned to one of the n basis vectors.

For the nonsmooth case, the runtime library of OpenAD changes the sizes of the derivative array d to n+s as
described in Fig. 1(a). It also defines a global array dz and du that each have for any occurring absolute value
one vector of size length n+s. By default, both arrays dz and du are initialized such that they form the Euclidean
standard basis of dimension n+s. The propagation of derivatives ensures that the entries of J, Z, L, and Y are computed
mechanically. The desired quantities are stored in the corresponding portions of the derivative arrays for the output
variables dz and du as shown in Fig. 1(c). The hand-coded replacement for the absolute value that is required for the
computation of the ANF is based on the propagation rules (2) and given in Fig. 1(b).

type active

sequence

real(w2f__8) :: v

real(w2f__8) , dimension(n+s) :: d = 0.0d0

end type

real(w2f__8) , dimension(s, n+s) :: dz = 0.0d0

real(w2f__8) , dimension(s, n+s) :: du = 0.0d0

(a) Modified runtime library

subroutine gabs(z, u)

use oad_active

implicit none

type(active) :: z

intent(inout) z

type(active) :: u

intent(inout) u

oad_abs_s_index = oad_abs_s_index + 1

du(oad_abs_s_index,1:n+s) = z%d(1:n+s)

u%v = abs(z%v)

u%d(1:n+s) = dz(oad_abs_s_index,1:n+s)

end subroutine

(b) Custom replacement for di↵erentiated gabs
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Figure 1: OpenAD code examples for the computation of the ANF and the resulting storage layout for the output
variables containing the partial derivatives Z, L, J , and Y
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